Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study.
نویسندگان
چکیده
BACKGROUND Reelin (RELN) is a glycoprotein secreted preferentially by cortical gamma-aminobutyric acid-ergic (GABAergic) interneurons (layers I and II) that binds to integrin receptors located on dendritic spines of pyramidal neurons or on GABAergic interneurons of layers III through V expressing the disabled-1 gene product (DAB1), a cytosolic adaptor protein that mediates RELN action. To replicate earlier findings that RELN and glutamic acid decarboxylase (GAD)(67), but not DAB1 expression, are down-regulated in schizophrenic brains, and to verify whether other psychiatric disorders express similar deficits, we analyzed, blind, an entirely new cohort of 60 postmortem brains, including equal numbers of patients matched for schizophrenia, unipolar depression, and bipolar disorder with nonpsychiatric subjects. METHODS Reelin, GAD(65), GAD(67), DAB1, and neuron-specific-enolase messenger RNAs (mRNAs) and respective proteins were measured with quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) or Western blot analyses. Reelin-positive neurons were identified by immunohistochemistry using a monoclonal antibody. RESULTS Prefrontal cortex and cerebellar expression of RELN mRNA, GAD(67) protein and mRNA, and prefrontal cortex RELN-positive cells was significantly decreased by 30% to 50% in patients with schizophrenia or bipolar disorder with psychosis, but not in those with unipolar depression without psychosis when compared with nonpsychiatric subjects. Group differences were absent for DAB1,GAD(65) and neuron-specific-enolase expression implying that RELN and GAD(67) down-regulations were unrelated to neuronal damage. Reelin and GAD(67) were also unrelated to postmortem intervals, dose, duration, or presence of antipsychotic medication. CONCLUSIONS The selective down-regulation of RELN and GAD(67) in prefrontal cortex of patients with schizophrenia and bipolar disorder who have psychosis is consistent with the hypothesis that these parameters are vulnerability factors in psychosis; this plus the loss of the correlation between these 2 parameters that exists in nonpsychotic subjects support the hypothesis that these changes may be liability factors underlying psychosis.
منابع مشابه
Reelin and glutamic acid decarboxylase67 promoter remodeling in an epigenetic methionine-induced mouse model of schizophrenia.
Reduction of prefrontal cortex glutamic acid decarboxylase (GAD67) and reelin (mRNAs and proteins) expression is the most consistent finding reported by several studies of postmortem schizophrenia (SZ) brains. Converging evidence suggests that the reduced GAD67 and reelin expression in cortical GABAergic interneurons of SZ brains is the consequence of an epigenetic hypermethylation of RELN and ...
متن کاملDecreased BDNF, trkB-TK+ and GAD67 mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders.
BACKGROUND Brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor (trkB-TK+) and glutamic acid decarboxylase (GAD67) mRNA levels have previously been found to be reduced in the prefrontal cortex of patients with schizophrenia. To determine whether this reduction extends to other brain regions, we measured the expression levels of BDNF, trkB-TK+ and GAD67 mRNA in regions of the hippo...
متن کاملIn psychosis, cortical interneurons overexpress DNA-methyltransferase 1.
Cortical DNA-methyltransferase 1 (DNMT1) is preferentially expressed in interneurons secreting GABA where it very likely contributes to promoter CpG island hypermethylation, thus causing a down-regulation of promoter functions. To consolidate and expand on previous findings that, in the cortex of schizophrenia (SZ) brains, glutamic acid decarboxylase 67 (GAD67) expression is down-regulated wher...
متن کاملDNA methyltransferase inhibitors coordinately induce expression of the human reelin and glutamic acid decarboxylase 67 genes.
Reelin and glutamic acid decarboxylase 67 (GAD67) mRNAs and protein levels are substantially reduced in postmortem brains of patients with schizophrenia. Increasing evidence suggests that the observed down-regulation of reelin and GAD67 gene expression may be caused by dysfunction of the epigenetic regulatory mechanisms operative in cortical GABAergic interneurons. To explore whether human reel...
متن کاملReelin promoter hypermethylation in schizophrenia.
Reelin mRNA and protein levels are reduced by approximately 50% in various cortical structures of postmortem brain from patients diagnosed with schizophrenia or bipolar illness with psychosis. In addition, the mRNA encoding the methylating enzyme, DNA methyltransferase 1, is up-regulated in the same neurons that coexpress reelin and glutamic acid decarboxylase 67. We have analyzed the extent an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Archives of general psychiatry
دوره 57 11 شماره
صفحات -
تاریخ انتشار 2000